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Complete S matrix in a microwave cavity at room temperature
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We experimentally study the widths of resonances in a two-dimensional microwave cavity at room tempera-
ture. By developing a model for the coupling antennas, we are able to discriminate their contribution from
those of Ohmic losses to the broadening of resonances. Concerning Ohmic losses, we experimentally put to
evidence two mechanisms: damping along propagation and absorption at the contour, the latter being respon-
sible for variations of widths from mode to mode due to its dependence on the spatial distribution of the field
at the contour. A theory, based on &matrix formalism, is given for these variations. It is successfully
validated through measurements of several hundreds of resonances in a rectangular cavity.
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I. INTRODUCTION nas. To be able to separate their respective contributions to
In the field of quantum chaos, microwave experimentsthe broadening of resonances, a thorough analysis is required

have proven to yield very important breakthroughs in provid-or:c thehwayhthe wave functions are spatially distributed
ing versatile analog models of quantum systems in the dotiroughout the cavity. . .
main of classical electromagnetic waved]. Room- The cavity we have actually used for our experiments is
temperature experiments have opened the J2yrapidly ~CcOMPosed of two rectangular OFHC copper plates between
which a copper rectangular frame is sandwiched. The rectan-

followed by experiments in superconducting cavifigk In a lar f has b hined . d
first stage, studies have mainly been concerned with the verffU'ar ffame nas been machin€d as one piece and Serves as

fication of predictions issued from random matrix theory oghe contour of the cavity. The cavity may thus be viewed as
from semiclassical approaches regarding spectral fluctua- - ;
tions. Losses, which were originally absent from theoreticafOntour C of length L=2.446 m, sectionS of area A

models, were seen as severe drawbacks in the seminal e:9'3528 n, and thicknessl=5 mm. As long as the wave-

periments, especially for an accurate analysis of resonan Ength)\ is larger f[hand, the boundary conditions in the
frequenciegsee, e.g.[2—4]). The first account of resonance diréction (perpendicular to the top and bottom plgtesly

widths observed in superconducting cavities was related thm't transverse magnetlc'l_'M)_ twa-dimensional (2D)
coupling losses in the absence of Ohmic losses, and meas 10des. The whole structure is tightly screwed and 10 holes

ing widths essentially amounted to measuring intensities at2'< been dr!lled through one of 'the plates to introduce 10
the locations of few antenn#S]. During the past decade, the antennas, which protrudg a lengtinto the cavity. The an-
great flexibility of microwave cavities has led to an impor- tennas are ”_‘O”Opo'ar with SMA connectors which are com-
tant diversification of geometries and configurations in ordermor.“.y used in the frequency range ff°”.‘ 0 to 18 GHz. The
to investigate the spectral correlations and the spatial distriP©Sitions of the antennas are displayed in Fig. 1. For a mea-

bution of the field, in closed or open, disordered, and/or chadurement, only one antenna at a time is used as a microwave

otic cavities(see[1] for a review. Nevertheless, until recent emitter and anothe(in transmissiopor the samein reflec-

years, the impact of the different loss mechanisms, present i%on%&\i Ia rzcewer.hThenother unusetfl antennﬁs are terminated
these systems, on their spatial or spectral statistical propeP o oha f' so t a:]a _anttlenn_?hs ehave the samel_wlfly dre-
ties attracted very little consideration. Indeed, as long ag2rding the losses they imply. These antennas are linked to

losses are weak, resonances can be viewed as isolated. ApHP 8720 D vector analyzer through flexible C"?‘b'es.- All the
the contrary, for increasing damping, resonances are nfieasurements are performed after a proper calibration to get

longer easily distinguished due to modal overlapping, and 7777777777 77777777
the very description of the wave system in terms of modes
loses its pertinence. Since the seminal papers by Ericson in
nuclear physic$6] and by Schroeder in room acoustid§, e 10
the regime of large modal overlap has been abundantly stud-
ied in the context of quantum chaf&-1Q.

The question of intermediate modal overlap for which
resonances can be distinguished but broadening is no longer
negligible is essentially open as ysee the excellent review
[11])). In the present paper, we propose to help pave the way
of a more complete understanding of microwave cavities at
room temperature by accounting for the presence of essen-
tially two kinds of loss mechanisms, namely Ohmic damping FIG. 1. Schematic view of the microwave cavity with locations
at the boundaries and coupling to the outside through anterf antennas.
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________ _p loen(2) = 1, €%+ e for-1* <z<0, (1)
i /|
Cavity
?/ . the time evolution being conventionally written €xjpwt).
= /7 - =+ The currenti(z) in the TEM region read§l3]
5 8 %
]
==Y}
1199 Vo, dkes 4 ook
g_,__é/____ L0 I(z)=?(¢4Ou + A;pe™?) for z> 0, (2
[ TEM //
whereZ is the characteristic impedance of the coaxial line.
Yz The following continuity conditions are then imposed:

FIG. 2. Schematic cut view of a coupling antenna. Physical
regions introduced in our model are displayed along with the asso- Ipert(_ 1*)=0,
ciated characteristic lengths.

Ipen(0) = 1(0). 3
rid of any parasitic influence of cables and connectors and
even of the analyzer itself. The measurements are given ifharefore

terms of scattering coefficients which form tf& matrix

(21 22) whereS,(S,,) measures the reflection on port2) sink(l * + 2)

and S;,(S,7) measures the transmission from por{3 to lper(?) =1(0)————— for —1* <z<0 (4)
sinkl*

port 1(2).

In the following section, we develop &matrix formu-
lation for an ideal cavity through the introduction of an elec-with
tromagnetic model of antennas which enables us to write the
response of the cavity within the form of a Breit-Wigner v
decomposition. Then, in the third section, we complete this 1(0) = —O(Aout+ Ain). (5)
description with a perturbative evaluation of Ohmic losses at z
the walls of the cavity. We show that the resulting Ohmic Inside the cavity, time-independent Maxwell's equations
width of each resonance may be decomposed in two qualitgjie|q the following wave equation for the electric fiefd
tively and quantitatively distinct contributions, one of them
being sensitive to the spatial distribution of the wave func- . R .
tion at the contour. Then, in Sec. 1V, we proceed to an ex- AE+KE=iwud, (6)
perimental validation of our model in the case of a rectangu-

lar cavity. We show that, for each measured resonance, Wghere, assuming a pointlike antenna at locatigrthe cur-

are able to discriminate quantitatively among the two OhmiGent density within the plane of the cavity reads
contributions to the total widths and the contribution due to

the presence of the antennas.

Iz, =187 -z for —I* <z<O0. (7)
IIl. SMATRIX FORMULATION FOR A CAVITY WITHOUT The 2D formulation of our problem is obtained by integrat-
OHMIC LOSSES ing Eq. (6) along z in different ways for the left-hand side
A. Electromagnetic model of antennas and the right-hand side. Indeed, while the left-hand side is

easily integrated over the thicknedsf the cavity, i.e., for

As an antenna, we use the terminal part of the center!*+1-d<z<-I*+1, the integration of the right-hand side
conductor of a coagsee F|g 2. Far from this termination, in is more involved. To account for the effective Coupling of the
a coaxial line, only transverse electromagn€éfiEM) modes ~ €lectric field with the current in the perturbed region, we
can propagate and the field results as the superposition @€fine a coupling functiofi(z) on the interva[-I*, 0] which
incoming and outgoing parts. In the vicinity of the termina- multiplies the current before integrating. To our knowledge,
tion of the line, hereafter called therturbed regionpertur- ~ only numerical approaches of this problem have been pub-
bative nonpropagating waves exigt2]. The longitudinal lished, using FDTD[14] or modal decompositiof15,1§.
variablez along the line is oriented outward from the cavity Here we adopt an effective description by assunfifmy=1
and its origin located at the border between the TEM and then the interval-1*, —1* + l4¢] andf(z)=0 on the rest of the
perturbed regions, i.e., at a distari¢efrom the end of the interval. The lengthq¢; is an adjustable parameter lying be-
antenna(see Fig. 2 In the perturbed region, assuming a tweenl andl*, most likely close td. Hence, forM identical
sinusoidal behavior, we write the stationary currggi(z) as  antennas, Eq:6) becomes

016205-2



COMPLETES MATRIX IN A MICROWAVE CAVITY AT ... PHYSICAL REVIEW E 71, 016205(2005

M 2
Y/ _ d
(A +K)ELN) X d=iwug, 8(F - rc);"(Agut+ AC (2 Houlzo) = - <Za|zb>£§ : (12
c=1
J‘"”'eff sink(l * + 2) For pointlike antennas, the coupling will be represented by
_x sinkl* . .
(M Wourin(B)|Ze) = to(E,20) 8(F = o). (13
Kl
. Sinz—;ff Let ®=[¢,(Nep (z1)...0p (zv)]" denote a state of the
_ Voo " m complete system. Then the eigenvalue probiaid =E,®
Z * * o
sin? 0057 may be written as

M _Aﬁpa('?) +22/|:1 5(F_ I?c)
X D) S(F = F) (A, + AS), (8)

=1 X J dzcto(Eo,Z0) 9Bc(Z0) = EgalF),
whereZ,=uo/ € is the vacuum impedance.

B. Breit-Wigner decomposition 6(Bo.2)@(fy) = ¢n(20) = Eogp,(20),
We now follow a standard approach in scattering theory to
analytically express thé& matrix of a microwave cavity
coupled to pointlike antennas. This kind of calculation was N . "
initiated in nuclear physicgl7] and has been reproduced in tu(Eo 2w @ulfm) = ‘PBM(ZM) = EO‘PBM(ZM)v (14)
various contexts since thgsee, e.g., Ref{11,18,19). The _ _ o
cavity is described as a closed system coupledtehan- where the. prime symbols stand fo.r the orc_im_ary d_envatlve.
nels, one for each antenna. The complete Hilbert space of the According to the electromagnetic description given at the
system comprises the cavity and the channels. It is therefof@@ginning of this sectiorte(Eq, z;) will be vanishing except
decomposed as the direct sum of Hilbert spaces associatedifba perturbed region of lengiti from the termination of the
the inside and the outside of the cavifz&,,® &y, Though ~ antenna. It is therefore quite natural to fix the originzoht
the inside Hilbert space is of infinite dimension, we adopt thethe limit of this region. Forz;> 0, the field is written as the
commonly used simplification of a finite dimensidfs=1  Superposition of ingoing and outgoing waves,
[11]. The Hamiltonian of the cavity;, is thus represented L
by anN X N matrix H. The eigenstates associatedHg, are — —4c ok ¢ ik
denoted ). The outside Hilbert space is associated toNhe @p(%) = &(AOU‘eI “rApee) forz>0, (19
antennas and is written as the direct sdij(E)=E&1(E) B
@--- @ Ey(E), whereE is the energy of a continuum of scat- where k?=E,. The factor 14k is required for dimensional
tering states denoted Hg,E) for channelc. Finally, W de-  and normalization purposes, asf, and.A¢ , are dimension-
notes the coupling matrix of dimensidwix M between the less complex amplitudes. Fa.€[-1*,0], the perturbed
bound states of the cavity and the scattering states of thield ¢(z.) in the coupling region is still to be a superposition
antennas. As long as the wavelength remains smaller than tleg plane waves. Continuity conditions in agreement with our
distances between antennas, the direct coupling betweeslectromagnetic description imply
channels may be neglected. The complete Hamiltoriian

thus reads bp(-1%)=0,
N M
H= MEl |H (o] + 021 dE|c, E)E(c, E| bp(0) = 04 (0). (16)
M- N One therefore deduces
+> > |,u>deW#C(E)(c,E| +H.c.
=l =t sink(zg+1%)
= —F—for - 1* <z.<0. (17
= Hin + Hout+ Woutain + Winﬂout- (9) d)ﬁC(ZC) (PBC(O) sinkl* or % 0 ( )

The normalization conditions are

(Vlp) = 6,, and(a,E|b,E’) = 8,,60(E - E'). (10)

The space representation &, is given by
N - here A;,=(AL---AMT and Ay, =(AL - AM)T, only the
. N = — —-r"A-. 11 W ) n in in out out out !
(FIHinlf") = = o7 = )A; (1) functions ¢4 (z) for z.>0 are relevant. Equatio(l4) can
Likewise, the space representation?df,; in the coax reads thus be obviously reduced to

The M X M S matrix being defined by

Aout: S»Aina (18)

016205-3



BARTHELEMY, LEGRAND, AND MORTESSAGNE PHYSICAL REVIEW E71, 016205(2005

M S o
~Aga(®) + SN SF-7) K= 7W =W 27)
, _
X f dthC(Eo,zc)d>5c(Zc) = Egea(h), Standard linear algebr@ee, e.g., Ref(18]) transforms ex-
- pression(26) into
_ U - 1
?p,(21) = Eopp (z0), =1 —2iWf_
1 1 S=1ly - 2i7W Z_H+ inV\FW' (298

Then, assuming a weak coupling, a perturbative expansion to
. leading orderconsidering the isolated cavity as the “zeroth
~¢p,(Zw) =Eopp,(zv),  (19)  order’) yields the following expression for an element of the

) S matrix:
wheret.(Eg,z.)=0 has been used f@.>0. Here again we

introduce the simplification of a nonvanishing constant value N W W
. . _ . naVvb
to(Eo) for t.(Eg,z,) only on the interval—I* ,—1* + | .¢]. With Sup= Sap— 2im 2 M : (29
this assumption and expressi(tv), the first equation in Eq. #=1 K2 — k;ZA +imD |W,Lc|2
(19) reads =1
M

.. where the sum runs over the eigenstates of the isolated cavity
= Ag (M) + 2 Te(K AT = F) g (0) =Eopa(), (200 with energies<c,. In Appendix A 2, it is shown that the cou-

c=l pling matrix elements, in the space representation, are given
with by
- oKlefs TR (7,
wey "2 W= T, 0
Tl = (21) vk
sin;cos; where ¢, (F)=(f|w) is the eigenfunction associated é

One finally obtains the following explicit expression for the

Assuming identical antennas, i.d,(k)=T(k), and by iden- SMatrix elements:

tifying Eq. (8) with Eqg. (20), one deduces

_ [T
Kl Sip=Oap~ 2 "
siP——
S U —— (22) N )
7 ke ke x> AU b (31)
sin—cos— ] i - )
22 @16+ TP [, (o P
In spite of the reduction performed in EQ.9), by elimi- =1
nating the source terms associated to the field inside the cav-
ity [18,19, the condition of self-adjointness can be recov-
ered through appropriate boundary conditions. In Appendix lll. PERTURBATIVE EVALUATION OF OHMIC
A 1, we show that it can be done through the following LOSSES
boundary condition for channet In this section, we present the results deduced from a
= . , standard first-order perturbation approach whose validity is
T (Kea(ro) = ‘PBC(O)' (23) restricted to nondegenerate modsse Jackson's textbook

We are now in a position to derive an explicit expression[zo])' The power @ dissipated(Ohmic lossesby a wave

for the S matrix. If the energy dependence of the couplin isWith frgquencyw within the surface elementbf a c_onduc—
small on a scale of the o?c)i/er gf the mean energy pspa?cin%ﬁr is given by the flux of the real part of the Poynting vector

; - - : rough this surface. By adopting Jackson’s convention
between neighboring modes, tBenatrix can be writterjl1] expi-iot) for the time dependence of the field, one has
Sav= Sap~ 27(@,EWI(E-Her) "WDE),  (24)

where 3—2 =- % R - (EOHY)], (32
Herr=H - iTWW. (29 wheren is the unit normal vector directed toward the interior
The S matrix can thus be rewritten of the conductor, ané andH are the fields at the surface. If
1-iK the conductor is perfeck is perpendicular to the surfac,
=TTk’ (26) is parallel, and there is no dissipated power — in the follow-
ing, parallel or perpendicular will be understoaith respect
with to the surface of the conductorhis ideal situation will cor-

016205-4
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respond to the zeroth order of our description of the field I +1,
near the surface of the actual conductor. For a finite conduc- = e
tivity o, one can compute the first-order corrections for the
fields following the standard approach described, for in-Using Faraday’s law, one obtains
stance, in Ref[20].

To first order, the perpendicular electric field and the par- I = gL_def j dal 9|2 (40)
allel magnetic field outside the conductor remain unmodi- A s
fied. Using appropriate boundary conditions together with _ )
Maxwell equations, it may be shown that nonvanishing parVhereé is defined by

allel components of both electric and magnetic fields exist 1 L
baciapor=c; [ [ wapor, @
c S

(39)

inside the conductor. These fields decrease as-exp),
where 6=\2/u.o0 is the skin deptl{u, being the magnetic
permeability of the conductor and its effective conductiv-

ity), and only depend on the zeroth-order parallel componen‘gn denotlng(n-_V). Here it should be rem_arked thtis a
ic fieldi© at the surface of the conductor. B parameter, which depends on the spatial structure of the
of the magnetic field,” a u uctor. BY ‘mode at hand. Likewise, one may compige

continuity, one deduces the existence of a small parallel com-

epw?

ponent of the electric field just outside the conductor, 2 = o2
ly=— dall Vo112, (42)
=) _ @By _ (a0 podds
20 Now using the 2D Green’s theorem together with E2),
. ' one gets
Using EQ.(33), one finds
dP _ puewd =)0 |2:26Jf dal 9|2 (43
To obtain the total power dissipated through Ohmic losse@nd, eventually,
within a cavity, a mere integration of equation £84) over c Ld
the walls is required. P= —(1 +§—> f f da| /92 (44)
In an ideal 2D cavity, the electromagnetic field does not oop 2A S
vary alongz, Considering that the total electromagnetic energy stored in
Hf(o)(x,y) 0 the cavity is given by
HO={HO(x,y) andE@={ 0 (35) € N ed
y Vo _€ 2= & 02
W= dv I E®lIe= da , 45
0 EQ(x,y). szv vIETIT=5 fL OF, @9
Denoting #©=E\”(x,y), the time-independent Maxwell the full width at half maximum{FWHM) of the resonances
equations are reduced to a 2D Helmholtz equation, is given by
(€I2+ Eﬂw2)¢(o)=01 (36) F:EZ&CE 2_(1)<1+§L_d> (46)
W udVuo 2A)°

where the transverse gradient operaﬁp'rs associated to the
(x,y) coordinates, and and u are, respectively, the permit- In our contextu./w is practically equal to unity. Thus one
tivity and the permeability inside the cavity. On the contour,finally has to consider two distinct types of Ohmic losses:

/% obeys Dirichlet conditions, those located at the surface of both ends, which amount to
0 attenuation along propagation, and Ohmic losses upon re-
y¥=0onc. (37 flection at the contour,
This yields a complete analogy with the free propagation of [Ohm= prop . refl (47)

a quantum particle in a 2D infinite well. This type of system
is commonly called ajuantum billiard For a given mode, Where

the Ohmic dissipated power reads 2 s
pprop= £ [ 2 - Dendd? (48)
d V 2u0ends d ’

1 d .
P=— §d€f dzll AOHOZ,,
20'5 c 0

. prefiz gl [ @ Lo (49)
+ f f dalli OH)2 S]. (39) A N Tuoon 2A
S

end

Here, we have introduced two different effective conductivi-
One defines the integrals andl, so that Eq(38) is rewrit-  ties (oengs and o) and their corresponding skin depths
ten as (8angs@nd 89 to account for two different types of copper
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used in our experiment, and for possible different surfacelV. EXPERIMENTAL VALIDATION IN A RECTANGULAR
states for the top and bottom plates and the inner surface of CAVITY

the copper frame used as the contour. These two contribu-
tions to the widths are also quite distinct in their physical
interpretation. Indeed[P™P truly corresponds to losses en- ~ The aim of this section is to check the pertinence of the
dured by a plane wave propagating in free space betwee#escription given above in a rectangular cavity where eigen-
two parallel infinite metallic planes. It is a slowly varying functions and eigenfrequencies are easily calculated in the
function of frequency, depending neither on the transversémit of vanishing losses. A preliminary test, which does not
geometry of the cavity, nor on the spatial distribution of theinvolve any sophisticated fitting procedure, consists in com-
wave function in the cavity"", on the contrary, is related to paring the average transmission between two antennas with
a loss mechanism located on the contour of the cavity, whicithe corresponding quantity deduced from E80). Accord-
clearly depends on the geometry of the latter, and chiefly, ofing to this equation, the transmission coefficiéat- b) for

the spatial distribution of the normal gradient of the wavew=w, approximately reads

function via the quantityz. I'"" therefore fluctuates from I

mode to mode and, in the case of the rectangular cavity, its S| = 2T2(wn)w’ (53)
explicit form will be given in the following section. By using o, Ty

a boundary perturbation technique to compute losses p?rtalr\}\?herern=ro“m+1’am. In a lossless rectangular cavity with
ing to reflections on the contour, it is shown in Appendix B sidesL. X L nthe e?genfrequencies are

that, to each correction of the imaginary part of the fre- Xy

guency due to Ohmic losses, there is a correspondingly equal 1\2 /m)\2

correction of the real part. Moreover, this boundary approach %= mc (L_> + (L_> : (54)
sheds light on the intimate connection between the boundary X Y

conditions on the contour, leading to nonpurely real wavewherel, m are integers. The corresponding eigenfunctions

A. A preliminary global test

functions, and the fluctuating partial width& [21]. read

Collecting the above results with those obtained in the
previous section, we are now in a position to write e 4O (xy) = ismlﬂ(smml (55)
matrix between weakly coupled pointlike antennas in a 2D e VLiLy Ly Ly

cavity in the presence of Ohmic losses. It reads ) ©)
Assuming that ()| :|¢//|'m(x,y)|, one deduces

N N N 4
_ : Inl(Fa) () 2 — LyLym wpl'y
Sab= Gab~ 2|T2(w)n§1 w2 — wﬁ + ing)(FnOhm_'_ Fﬁm), T(w) 128 <‘Sab(wn)|>v (56)

(500  where the average is performed on the positignandry, of

the antennas. In our experiments, the average was obtained
by performing the 45 distinct transmission measurements
that the 10 antennas allow. The valueswgfandI’,, used in

the experimental evaluation of the right-hand side of(&6)

were obtained, in a rough way, through the analysis of the

Wherewn:wgo)—l“ghm/ 2 and the{wﬁlo)}’s are the unperturbed
eigenfrequencies of the ideal lossless cavity, and where

inzﬂeff group delay This quantity, defined as the derivative of the
Z 2c phaseg,, of S, with respect tow, presents rather well de-
T(w) = T ol (51 fined extrema at frequencies close to eigenfrequencies. For a
sin e cosz gross estimation df,, we used’,=2/{dg,(w,) / dw), which

is exact for an isolated resonance. Note that, in the case of
o ) ) ) moderate or large modal overlap, this method generally over-
the contribution of antennas to the widths being given, aictimates the widths. Knowing the dimensidgsandL, of

leading order, by the cavity, the right-hand side of E¢6) only depends on
the length parametets;; andl*. Recall thatl* is the length
T2 w,) M of the perturbed region at the end of the coax, andlhais
ant _ @n 0) 7 \|2 . . . L. L.
Iym= 0 2 (. (52)  the effective length over which the field inside the cavity is
n c=1

coupled to the antenna. One may assume, in this preliminary
global test, thal.¢; remains close to the lengttof the part of
Here it should be remarked that the second fagidn Eq. the antenna which lies inside the cavityly;=I

(50) should not be a complex conjugate. Indeed, due t6=2.0+0.3 mm. In the same way, a rough estimatd*ois
Ohmic losses, the wave functions are no longer real and thgiven by the distance between the end of the antenna and the
S matrix cannot keep its unitarity. Nonetheless, it obviouslyreferencgcalibration plane of the coax: 16.5£0.2 mm. Fig-
has to remain symmetric. In the previous section, we usedre 3 compares? as obtained through Eq51) with its

the Hermitian formalism for the sake of convenience, but itexperimental value deduced from E&6) for the first 348
turns out to be inappropriate for the present purpgsse, for  resonances up to 5.5 GHz. The lowest and the highest con-
instance, Ref[13] about self-adjoint systems tinuous curves correspond kg¢=1.7 mm andg=2.3 mm,
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T T 3 T T T T Ll

n=18 k2wl

Frequency in GHz

FIG. 3. Experimentally based estimation B{w,,) as given by
Eq. (56) (crosses The gray region corresponds to its theoretical - n = 238 \ .
expression(51) for values oflgs between 1.7 mm and 2.3 mm B
(I*=1.65 cm.

respectively. At the resolution of the presented figure, the - \ ]
curves obtained for values ¢f ranging from 16.3 mm to [
16.7 mm are not distinguishable. A fair agreement is ob- - o
served between the experiment and our model. A first conse- * \ 4
quence of this test is to substantiate the correspondence be- 1 =~~~ N -4
tween the length parameters of our model and the actual 1 9 3 4 5 6 7 8 9 10
lengths of the coax antennas. Note also that this global pre-
liminary test requires no sophisticated data processing of the

individual resonances. In the following, we will see how our g 4 Comparison of Eq59) with 2T2(wn)\¢'|(0)(xa y.)[2 at the
. . . . . . . vm ’
model for coupling with antennas remains quite satisfactoryep, antennagindices are introduced in Fig.) for resonances

antenna’s index

when put to more stringent tests. =78 andn=238.
B. A test with individual resonances 1 |Aab||Aa°|
2T2(wn)| lzbl(%(xa1ya)|2 = 3_6 E n—bcnv (59)
In the global test presented above, we had no need of a bera  |An]

precise knowledge of the wave functions at the antennas. To b=e

check the validity of formula50), we have developed an where |y,(F)]| :|,//|<$31(x,y)| is assumed. For a given reso-

original fitting procedurgsee[22]) to extract the actual com- npance, one can directly compare the above quantity with

plex eigenfrequencies, and the complex amplitudes 2T2(w,)| ll/f?;(xa,yaﬂz for the ten antennaga=1,...,10).
This comparison is shown in Fig. 4 for two distinct reso-
AP = — 2iT2(wp) th(Fo) () - (57  nances, namely=78 at 2.655 GHz andh=238 at 4.558

GHz. As the great majority of resonances that we are con-
With this procedure, based upon a mixture of robust a|go_cerned with are narrow enough to ensure a good correspon-

rithms, we could check that the actual eigenfrequencies red€nce with the unperturbed wave functions, we observe a
main very close to the unperturbed values given by(sg) ~ fairly good agreement.

in the frequency range studied here. Now we proceed to To extend our comparison to all resonances, one can now
verify that the amplitudes\, deduced from our measure- 2verage over all ten locations of antenagFor 'the best
ments are well described by E@7) with expression51) for ~ Values Ofle;=1.9 mm and*=16.5 mm obtained in the fre-

T and formula(55) to approximate the true eigenfunctions. UeNCy range from 2 GHz to 5.5 GHz, Fig. 5 shows the
Indeed, even if the existence of nonuniform losgiwiefly ~ Gomparison — between  the experimental  quantity
those associated ") leads to nonpurely real wave func- (363b<cral AST]|AS]/[AXD), and the prediction P(wy)
tions, we will see below that the corrections remain very><<|l//|(%)q(xa,ya)|2>a up to 5.5 GHz. The agreement is excellent
small. From Eq(57) it is easily deduced for three different on the average. By a close inspection, e.g., between 2 GHz

antennas, b, andc that and 3 GHz as shown in the inset, one can notice that the
agreement is generally excellent even at the level of indi-
| AabH A2 vidual resonances. Rare important discrepancies are ob-
e = 2T () ()2 - (58)  served for very close neighboring eigenfrequen¢igmside-
IAY] generacies due to modal overlapping. Indeed, when the

latter effect is not negligible, one expects that the spatial
As there are 36 different ways of combining the 45 ampli-distribution of the wave function results from a linear com-
tudesA?®, yielding 36 slightly different values of Eq58), bination of neighboring unperturbed wave functiof#s3].
one can use the following average estimate: Beyond 3 GHz, this effect deteriorates the agreement due to
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0 - Y i cidir SR ) Frequency in GHz
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FIG. 6. Values of & ,— 1) after Eq.(61) for all resonances up to
Frequency in GHz 5.5 GHz.

(4 FIG. - >. abc";‘gpa”;%” between .the eXpe”.m?mal 5 quantity,, the previous subsection, we already checked the validity
3762b<°¢a|A" HA” |/|A” | a (Crossepwith the prediction () of the above formula for all resonances shown in Fig. 5 since
X(|1//(O)(X 2|9, (line). Inset: enlarged view within the range 2—3 . . . 9

GHzI'm wyele 9 g Fﬁ”mt is essentially proportional to the sum of expresgio9)

' over all antennas.

) ) ] Thus by fitting the experimental transmission by formula
the concomitant increase of the total width and decrease C{f:SO), one obtains a direct measure of the total width and an

the mean spacing, leading to an inadequacy of the zerothngirect measure dF2™, thus enabling us to evaluate the two

order eigenfunctions we use for our test. effective conductivitiesrg,gs and oo A representation of
all the Ohmic widthsl“ﬁ’hm:l"n—l"ﬁﬂ} up to 3 GHz is given in
C. Partial width decomposition Fig. 7. A comparison is shown between theoretical Ohmic

) widths (crossegsand experimental Ohmic widthsontinuous
As seen above, the total width of a resonance can bgurye. The smooth dominant contribution given B§R(w)
decomposed as a sum of three partial widths associated 18 jndicated by the dashed curve. The agreement on the mean
losses through the antennas, Ohmic losses on the contour @e| and on the amplitude of fluctuatiorsnly present in
i i N e fai
the cavity, and Ohmic losses at the surface of both endp[]e) is fairly good, whereas, resonance by resonance, the

which appear as damping along propagation. In a rectangulgjgreement is not systematic, essentially due to the effect of
cavity, the total width of theith resonance, characterized by modal overlap mentioned above.

the quantum numbeidsandm, is given by

To=Tm+Te0+ TP ). (60) V. CONCLUSION

I,m

In conclusion, we have tried to provide a better under-
standing of the physical mechanisms at the origin of reso-
nance broadening in microwave cavities. We have explicitly

By using expressioigs5) for the wave functions in order to
evaluate the factog in Eq. (41), one obtains

&m= A <|2+mZ> (61) 1
S NRVERNT
whence, using Eq49), 8F
C2Oonfwp) (12 mP S|
el = =00 o+ = | 62 o .6f
209 L 62 =
These partial widths clearly vary from mode to mode as il- AL
lustrated in Fig. 6, wher¢ ,—1 is shown for each eigenfre- R
guency up to 5.5 GHz. Note that tlig,’s oscillate around 9 . . . . .
unity and vary at most by 23%. “0 05 1 15 9 25 3
The widths associated to losses through antennas also Frequency in GHz

vary from mode to mode,
FIG. 7. Behavior of the Ohmic widths up to 3 GHz. Comparison

T wy) M is shown between theoretical Ohmic widtfsossey and experi-
Fﬁ'r‘n‘: (0;‘ > |¢f%(ﬁc)\2_ (63) mental Ohmic Widths(cc_)ntipuous curve The dashed curve indi-
@m c=1 cates the smooth contributidrP™P(w).
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developed anS-matrix model including the frequency- (H®,®') - (D, HD')

dependent coupling of the antennas and accounting for

Ohmic absorption at the boundaries of a two-dimensional _ o _ *
cavity. We have especially emphasized the necessity to dis- f fA O ¢a(N[ACw (N1~ [A@a(P]* ¢0r (D}
tinguish between Ohmic attenuation along propagation, lead-
ing to a smooth frequency-dependent contribution to the total . . R s
width, and localized absorption at the contour of the cavity, * Zl[Tc(k)‘PBC(O)‘Pa’(rc) ~ @I Te(Ki e (0)]

yielding a contribution varying from mode to mode. We have «

performed experiments where we analyzed the transmission Mo . . Y

versus frequency in terms of a Breit-Wigner decomposition -2 dzc[%'c(zc)%é(zc) - <P/3C(Zc)<Pﬁé(Zc)]- (A3)
deduced from our model. In the rectangular cavity we used, =10

all the quantities involved in our theoretical description ysing Green’s theorem for the first term and integrating the
could easily be calculated in the perturbative limit of smallhirg one by parts, one obtains

or moderate modal overlap. We therefore have been able to

validate our approach and provide a very precise estimation (H®,®’)— (®,HD')

of the various contributions to the total widths. In particular,

the varying contribution of Ohmic losses at the contour could = 3€ A (] = )

be quantitatively checked at the level of individual reso- cdn{%m[v% (F)] [Veun e, (F)}

nances, except for quasidegenerate modes. This approach has

M

M
recently enabled us to relate the losses at the contour, " " > >
in a chaotic cavity, to the imaginary part of the wave func- * E[Tc(k)"’ﬁc(o)%’(%) - ‘Pa(rC)TC(k)‘PBé(O)]
tion [21]. "
We believe that our present approach is an important step e ; , -
to test existing or yet to come theories of open or absorptive B gl[%c(zc)%g(zc) B ‘Pﬁc(zc)%é(zc)]o' (A4)

chaotic wave systems. Indeed, such theories generally as-

sume that losses are associated with distinct well identifiedhe eigenfunctionsp,(f) obey boundary Dirichlet condi-

coupling channelq11]. It is nonetheless not obvious that tjons and the last term in E@A4) vanishes forz— . The
these can be used to describe different sources of loss agjf-adjointness condition can thus be written

damping along propagation or Ohmic dissipation at the con-
tour. For instance, absorbing boundaries may be viewed asa M

number(of the order ofL/\) of distributed coupling chan- > {[¢’Bt(0)@gé(0) - QDZC(O)GD/B/(O):I

nels. Indeed, to mimic absorption, recent theoretical predic- &1 ¢

tions have been proposed but only in the asymptotic limit of + o5 (0T (K0 (F) = TAK O (P oar (0l =0

a large number of effective channels with vanishing coupling (P'Bc( ITe0ga(Fe) = Te(k) ol C)(Pﬁc( )} '
[24,25 (see alsd10]). (A5)

This condition is nontrivially fulfilled by imposing

ACKNOWLEDGMENTS * > ’
TiKgo(fo) = ¢, 0). (A6)
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with P. Sebbah, R. L. Weaver, and H.-J. Stéckmann.
2. The coupling matrix elements

H — L2
APPENDIX A: EVALUATION OF THE S MATRIX AssumingE,=k*, €d.(20) now reads

M
(A+K) @ (F) = 2 T F-F)es (0. (A7)
1. Self-adjointness condition c=1
In the Hilbert space of the complete problgoavity and ~ Furthermore, the Green’s functions of the isolated cavity are
antennaj one defines the following scalar product: given by
. M- e . (A+K)G(F,F" k) = 8F-"). (A8)
(®,®") =f f AN (D) + 2 | dzeg (2 ep (Z0). _ o _
A c=1Jo ¢ ¢ By comparing eqs(A7) and(A8), for r=r,, one obtains
(A1) M
With this scalar product, the self-adjointness condition allp) = 21 Tk G(Fp, e, Kep(0). (A9)
c=
(H®,®") = (P, HD) (A2)

With the boundary condition6A6) and the expressio(il5)
reads of ¢g, relation(A9) becomes
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Aﬁ] _ E-|- (k)z T(K)G( I’b,l’c,k).Am out

i, .
+ ETb(k)E To(KG(Fy, Fo, k)AL, (A10)
b=1

or, in a matrix form,

Am - iKAin = Aout"' iK~Aoutv (All)
whereK is anM X M matrix defined by

Tk ; (k)
ab(k) ak G( 31 bi k (A12)

From A,,=SA;, one thus makes the relatig26) betweerk
and theS matrix explicit. By introducing in Eq(12) the

expansion of the Green'’s function in terms of the eigenfunc-

tions () =(r| v} of the isolated cavity,

v=1 -
one finds the following expression for tlie matrix:
T(kw*(r*a))* 1 (Tb(kw*(rv)
Kap(K) = | =" = .
ab( ) < \”@ k2 kz \e’k
(A14)

Finally, the elements of the coupling mathy¥, related toK
by Eq.(27), are given by

TR, (1)

W —
vk

pne

(A15)

APPENDIX B: PERTURBATIVE BOUNDARY
CONDITIONS

PHYSICAL REVIEW E/1, 016205(2005

defined by Eqs(36) and(37), the perturbation of the bound-
ary conditions can be written

p=-(1 +I)—f9nilfo onC. (B1)

Green’s theorem applied to this 2D problem straightfor-
wardly yields

d € [dnihol®
1usdle

- Mffda|‘/fo|2

Writing the perturbed eigenfrequency ass wg+ dw—il"/2,
Eq. (B2) becomes

0’ = wi=—(1+i)— (B2)

3€ d € |l
1 pcd

4 ’
i [ [ i

leading, in the case at hand, to equal corrections on both real
and imaginary parts ob. This last comment is general and
applies as well to the corrections originating from Ohmic
losses at the top and bottom of the cavity. Thus, this pertur-
bative approach completely agrees with the one developed in
Sec. Il as long as the widths are concerned and completes it
as it provides an estimation of the frequency shift of the
resonances related to Ohmic losses. This was indeed remark-
ably well verified for all the resonances with frequencies
larger than 2 GHz studied in Sec. IV of the present article,
these results being detailed in Chap. V of Barthélemy’s thesis
(Ref.[22)]). It is also particularly interesting to note that Eq.
(B1) gives a quite natural hint of how Ohmic losses on the
contour induce a small amount of complexity for wave func-
tions that are purely real in the unperturbed limit. As long as

—-iIr2=-1+i)—

(B3)

An alternative way of computing the losses at the contour perturbative approach is valid, an immediate connection is
is easily obtained by following a boundary perturbation tech-deduced between the complex character of wave functions

nigue(see, for instancd20]). Indeed, calling), the solution

and the fluctuating part of the widths embodied in the quan-

at the real eigenfrequency, of the zeroth-order problem tity ¢ defined in Eq(41) [21].
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