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We experimentally study the widths of resonances in a two-dimensional microwave cavity at room tempera-
ture. By developing a model for the coupling antennas, we are able to discriminate their contribution from
those of Ohmic losses to the broadening of resonances. Concerning Ohmic losses, we experimentally put to
evidence two mechanisms: damping along propagation and absorption at the contour, the latter being respon-
sible for variations of widths from mode to mode due to its dependence on the spatial distribution of the field
at the contour. A theory, based on anS-matrix formalism, is given for these variations. It is successfully
validated through measurements of several hundreds of resonances in a rectangular cavity.
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I. INTRODUCTION

In the field of quantum chaos, microwave experiments
have proven to yield very important breakthroughs in provid-
ing versatile analog models of quantum systems in the do-
main of classical electromagnetic waves[1]. Room-
temperature experiments have opened the way[2], rapidly
followed by experiments in superconducting cavities[3]. In a
first stage, studies have mainly been concerned with the veri-
fication of predictions issued from random matrix theory or
from semiclassical approaches regarding spectral fluctua-
tions. Losses, which were originally absent from theoretical
models, were seen as severe drawbacks in the seminal ex-
periments, especially for an accurate analysis of resonance
frequencies(see, e.g.,[2–4]). The first account of resonance
widths observed in superconducting cavities was related to
coupling losses in the absence of Ohmic losses, and measur-
ing widths essentially amounted to measuring intensities at
the locations of few antennas[5]. During the past decade, the
great flexibility of microwave cavities has led to an impor-
tant diversification of geometries and configurations in order
to investigate the spectral correlations and the spatial distri-
bution of the field, in closed or open, disordered, and/or cha-
otic cavities(see[1] for a review). Nevertheless, until recent
years, the impact of the different loss mechanisms, present in
these systems, on their spatial or spectral statistical proper-
ties attracted very little consideration. Indeed, as long as
losses are weak, resonances can be viewed as isolated. On
the contrary, for increasing damping, resonances are no
longer easily distinguished due to modal overlapping, and
the very description of the wave system in terms of modes
loses its pertinence. Since the seminal papers by Ericson in
nuclear physics[6] and by Schroeder in room acoustics[7],
the regime of large modal overlap has been abundantly stud-
ied in the context of quantum chaos[8–10].

The question of intermediate modal overlap for which
resonances can be distinguished but broadening is no longer
negligible is essentially open as yet(see the excellent review
[11]). In the present paper, we propose to help pave the way
of a more complete understanding of microwave cavities at
room temperature by accounting for the presence of essen-
tially two kinds of loss mechanisms, namely Ohmic damping
at the boundaries and coupling to the outside through anten-

nas. To be able to separate their respective contributions to
the broadening of resonances, a thorough analysis is required
of the way the wave functions are spatially distributed
throughout the cavity.

The cavity we have actually used for our experiments is
composed of two rectangular OFHC copper plates between
which a copper rectangular frame is sandwiched. The rectan-
gular frame has been machined as one piece and serves as
the contour of the cavity. The cavity may thus be viewed as
the slice of a rectangular waveguide closed at bothends, with
contour C of length L=2.446 m, sectionS of area A
=0.3528 m2, and thicknessd=5 mm. As long as the wave-
length l is larger thand, the boundary conditions in thez
direction (perpendicular to the top and bottom plates) only
admit transverse magnetic(TM) two-dimensional (2D)
modes. The whole structure is tightly screwed and 10 holes
have been drilled through one of the plates to introduce 10
antennas, which protrude a lengthl into the cavity. The an-
tennas are monopolar with SMA connectors which are com-
monly used in the frequency range from 0 to 18 GHz. The
positions of the antennas are displayed in Fig. 1. For a mea-
surement, only one antenna at a time is used as a microwave
emitter and another(in transmission) or the same(in reflec-
tion) as a receiver. The other unused antennas are terminated
by 50V loads so that all antennas behave the same way re-
garding the losses they imply. These antennas are linked to
an HP 8720 D vector analyzer through flexible cables. All the
measurements are performed after a proper calibration to get

FIG. 1. Schematic view of the microwave cavity with locations
of antennas.
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rid of any parasitic influence of cables and connectors and
even of the analyzer itself. The measurements are given in
terms of scattering coefficients which form theS matrix
s S11 S12

S21 S22
d, whereS11sS22d measures the reflection on port 1(2)

and S12sS21d measures the transmission from port 2(1) to
port 1 (2).

In the following section, we develop anS-matrix formu-
lation for an ideal cavity through the introduction of an elec-
tromagnetic model of antennas which enables us to write the
response of the cavity within the form of a Breit-Wigner
decomposition. Then, in the third section, we complete this
description with a perturbative evaluation of Ohmic losses at
the walls of the cavity. We show that the resulting Ohmic
width of each resonance may be decomposed in two qualita-
tively and quantitatively distinct contributions, one of them
being sensitive to the spatial distribution of the wave func-
tion at the contour. Then, in Sec. IV, we proceed to an ex-
perimental validation of our model in the case of a rectangu-
lar cavity. We show that, for each measured resonance, we
are able to discriminate quantitatively among the two Ohmic
contributions to the total widths and the contribution due to
the presence of the antennas.

II. S-MATRIX FORMULATION FOR A CAVITY WITHOUT
OHMIC LOSSES

A. Electromagnetic model of antennas

As an antenna, we use the terminal part of the center
conductor of a coax(see Fig. 2). Far from this termination, in
a coaxial line, only transverse electromagnetic(TEM) modes
can propagate and the field results as the superposition of
incoming and outgoing parts. In the vicinity of the termina-
tion of the line, hereafter called theperturbed region, pertur-
bative nonpropagating waves exist[12]. The longitudinal
variablez along the line is oriented outward from the cavity
and its origin located at the border between the TEM and the
perturbed regions, i.e., at a distancel* from the end of the
antenna(see Fig. 2). In the perturbed region, assuming a
sinusoidal behavior, we write the stationary currentIpertszd as

Ipertszd = I+eikz + I−e−ikz for − l * , z, 0, s1d

the time evolution being conventionally written exps−ivtd.
The currentIszd in the TEM region reads[13]

Iszd =
V0

Z
sAoute

ikz+ Aine
−ikzd for z. 0, s2d

whereZ is the characteristic impedance of the coaxial line.
The following continuity conditions are then imposed:

Iperts− l * d = 0,

Iperts0d = Is0d. s3d

Therefore,

Ipertszd = Is0d
sinksl * + zd

sinkl*
for − l * , z, 0 s4d

with

Is0d =
V0

Z
sAout + Aind. s5d

Inside the cavity, time-independent Maxwell’s equations

yield the following wave equation for the electric fieldEW :

DEW + k2EW = ivmJW , s6d

where, assuming a pointlike antenna at locationrW0, the cur-
rent density within the plane of the cavity reads

JWsz,rWd = IszddsrW − rW0dẑ for − l * , z, 0. s7d

The 2D formulation of our problem is obtained by integrat-
ing Eq. (6) along z in different ways for the left-hand side
and the right-hand side. Indeed, while the left-hand side is
easily integrated over the thicknessd of the cavity, i.e., for
−l * + l −d,z,−l * + l, the integration of the right-hand side
is more involved. To account for the effective coupling of the
electric field with the current in the perturbed region, we
define a coupling functionfszd on the interval[−l*, 0] which
multiplies the current before integrating. To our knowledge,
only numerical approaches of this problem have been pub-
lished, using FDTD[14] or modal decomposition[15,16].
Here we adopt an effective description by assumingfszd=1
on the interval[−l*, − l * + lef f] and fszd=0 on the rest of the
interval. The lengthlef f is an adjustable parameter lying be-
tweenl andl*, most likely close tol. Hence, forM identical
antennas, Eq.(6) becomes

FIG. 2. Schematic cut view of a coupling antenna. Physical
regions introduced in our model are displayed along with the asso-
ciated characteristic lengths.
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sD + k2dEzsrWd 3 d = ivm0o
c=1

M

dsrW − rWcd
V0

Z
sAout

c + Ain
c d

3E
−l*

−l*+ lef f sinksl * + zd
sinkl*

dz

=
iV0Z0

Z

sin2klef f

2

sin
kl*

2
cos

kl*

2

3o
c=1

M

dsrW − rWcdsAout
c + Ain

c d, s8d

whereZ0=Îm0/e0 is the vacuum impedance.

B. Breit-Wigner decomposition

We now follow a standard approach in scattering theory to
analytically express theS matrix of a microwave cavity
coupled to pointlike antennas. This kind of calculation was
initiated in nuclear physics[17] and has been reproduced in
various contexts since then(see, e.g., Ref.[11,18,19]). The
cavity is described as a closed system coupled toM chan-
nels, one for each antenna. The complete Hilbert space of the
system comprises the cavity and the channels. It is therefore
decomposed as the direct sum of Hilbert spaces associated to
the inside and the outside of the cavity:E=Ein % Eout. Though
the inside Hilbert space is of infinite dimension, we adopt the
commonly used simplification of a finite dimensionN@1
[11]. The Hamiltonian of the cavityHin is thus represented
by anN3N matrix H. The eigenstates associated toHin are
denoteduml. The outside Hilbert space is associated to theM
antennas and is written as the direct sumEoutsEd=E1sEd
%¯% EMsEd, whereE is the energy of a continuum of scat-
tering states denoted byuc,El for channelc. Finally, W de-
notes the coupling matrix of dimensionN3M between the
bound states of the cavity and the scattering states of the
antennas. As long as the wavelength remains smaller than the
distances between antennas, the direct coupling between
channels may be neglected. The complete HamiltonianH
thus reads

H = o
m, n=1

N

umlHmnknu + o
c=1

M E dEuc,ElEkc,Eu

+ o
c=1

M

o
m=1

N Suml E dEWmcsEdkc,Eu + H . c.D
= Hin + Hout + Wout→in + Win→out. s9d

The normalization conditions are

knuml = dnm andka,Eub,E8l = dabdsE − E8d. s10d

The space representation ofHin is given by

krWuHinurW8l = − dsrW − rW8dDrW. s11d

Likewise, the space representation ofHout in the coax reads

kzauHoutuzbl = − kzauzbl
d2

dzb
2 . s12d

For pointlike antennas, the coupling will be represented by

krW uWout→insEduzcl = tcsE,zcddsrW − rWcd. s13d

Let F=fwasrWdwb1
sz1d…wbM

szMdgT denote a state of the
complete system. Then the eigenvalue problemHF=E0F
may be written as

− DwasrWd + oc=1

M
dsrW − rWcd

3E dzctcsE0,zcdwbcszcd = E0wasrWd,

t1
psE0,z1dwasrW1d − wb19 sz1d = E0wb1

sz1d,

]

tM
p sE0,zMdwasrWMd − wbM

9 szMd = E0wbM
szMd, s14d

where the prime symbols stand for the ordinary derivative.
According to the electromagnetic description given at the

beginning of this section,tcsE0,zcd will be vanishing except
in a perturbed region of lengthl* from the termination of the
antenna. It is therefore quite natural to fix the origin ofzc at
the limit of this region. Forzc.0, the field is written as the
superposition of ingoing and outgoing waves,

wbc
szcd =

1
Îk

sAout
c eikzc + Ain

c e−ikzcd for zc . 0 , s15d

where k2=E0. The factor 1/Îk is required for dimensional
and normalization purposes, andAin

c andAout
c are dimension-

less complex amplitudes. Forzc[ f−l * ,0g, the perturbed
field fszcd in the coupling region is still to be a superposition
of plane waves. Continuity conditions in agreement with our
electromagnetic description imply

fbc
s− l * d = 0,

fbc
s0d = wbc

s0d. s16d

One therefore deduces

fbc
szcd = wbc

s0d
sinkszc + l * d

sinkl*
for − l * , zc , 0 . s17d

The M 3 M S matrix being defined by

Aout = SAin, s18d

where Ain=sAin
1
¯Ain

MdT and Aout=sAout
1
¯Aout

M dT, only the
functionswbc

szcd for zc.0 are relevant. Equation(14) can
thus be obviously reduced to
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− DwasrWd + oc=1

M
dsrW − rWcd

3E
−lp

0

dzctcsE0,zcdfbc
szcd = E0wasrWd,

− wb1
9 sz1d = E0wb1

sz1d,

]

− wbM
9 szMd = E0wbM

szMd, s19d

where tcsE0,zcd=0 has been used forzc.0. Here again we
introduce the simplification of a nonvanishing constant value
tcsE0d for tcsE0,zcd only on the intervalf−l * ,− l * + lef fg. With
this assumption and expression(17), the first equation in Eq.
(19) reads

− DwasrWd + o
c=1

M

TcskddsrW − rWcdwbc
s0d = E0wasrWd, s20d

with

Tcskd =
tcsE0d

k

sin2klef f

2

sin
kl*

2
cos

kl*

2

. s21d

Assuming identical antennas, i.e.,Tcskd; T̃skd, and by iden-
tifying Eq. (8) with Eq. (20), one deduces

T̃skd = iÎk
Z0

Z

sin2klef f

2

sin
kl*

2
cos

kl*

2

. s22d

In spite of the reduction performed in Eq.(19), by elimi-
nating the source terms associated to the field inside the cav-
ity [18,19], the condition of self-adjointness can be recov-
ered through appropriate boundary conditions. In Appendix
A 1, we show that it can be done through the following
boundary condition for channelc:

T̃ * skdwasrWcd = wbc
8 s0d. s23d

We are now in a position to derive an explicit expression
for theS matrix. If the energy dependence of the coupling is
small on a scale of the order of the mean energy spacing
between neighboring modes, theSmatrix can be written[11]

Sab = dab − 2pika,EuW†sE − Hef fd−1Wub,El, s24d

where

Hef f = H − ipWW†. s25d

The S matrix can thus be rewritten

S=
1 − iK

1 + iK
, s26d

with

K = pW† 1

E − H
W. s27d

Standard linear algebra(see, e.g., Ref.[18]) transforms ex-
pression(26) into

S= IM − 2ipW† 1

k2 − H + ipWW†W. s28d

Then, assuming a weak coupling, a perturbative expansion to
leading order(considering the isolated cavity as the “zeroth
order”) yields the following expression for an element of the
S matrix:

Sab = dab − 2ipo
m=1

N
Wma

p Wnb

k2 − km
2 + ipo

c=1

M

uWmcu2
, s29d

where the sum runs over the eigenstates of the isolated cavity
with energieskm

2. In Appendix A 2, it is shown that the cou-
pling matrix elements, in the space representation, are given
by

Wmc =
T̃skdcm

p srWcd
Îkp

, s30d

where cmsrWd=krW uml is the eigenfunction associated tokm
2.

One finally obtains the following explicit expression for the
S-matrix elements:

Sab= dab− 2i
uT̃skdu2

k

3o
m=1

N
cmsrWadcm

p srWbd

k2 − km
2 +

i

k
uT̃skdu2o

c=1

M

ucmsrWcdu2
. s31d

III. PERTURBATIVE EVALUATION OF OHMIC
LOSSES

In this section, we present the results deduced from a
standard first-order perturbation approach whose validity is
restricted to nondegenerate modes(see Jackson’s textbook
[20]). The power dP dissipated(Ohmic losses) by a wave
with frequencyv within the surface element da of a conduc-
tor is given by the flux of the real part of the Poynting vector
through this surface. By adopting Jackson’s convention
exps−ivtd for the time dependence of the field, one has

dP

da
= −

1

2
Refn̂ · sEW ∧ HW * dg, s32d

wheren̂ is the unit normal vector directed toward the interior

of the conductor, andEW andHW are the fields at the surface. If

the conductor is perfect,EW is perpendicular to the surface,HW

is parallel, and there is no dissipated power — in the follow-
ing, parallel or perpendicular will be understoodwith respect
to the surface of the conductor. This ideal situation will cor-
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respond to the zeroth order of our description of the field
near the surface of the actual conductor. For a finite conduc-
tivity s, one can compute the first-order corrections for the
fields following the standard approach described, for in-
stance, in Ref.[20].

To first order, the perpendicular electric field and the par-
allel magnetic field outside the conductor remain unmodi-
fied. Using appropriate boundary conditions together with
Maxwell equations, it may be shown that nonvanishing par-
allel components of both electric and magnetic fields exist
inside the conductor. These fields decrease as exps−z/dd,
whered=Î2/mcsv is the skin depth(mc being the magnetic
permeability of the conductor ands its effective conductiv-
ity), and only depend on the zeroth-order parallel component

of the magnetic fieldHW i
s0d at the surface of the conductor. By

continuity, one deduces the existence of a small parallel com-
ponent of the electric field just outside the conductor,

EW i
s1d =Îvmc

2s
s1 − idsn̂ ∧ HW i

s0dd . s33d

Using Eq.(33), one finds

dP

da
=

mcvd

4
i HW //

s0di2. s34d

To obtain the total power dissipated through Ohmic losses
within a cavity, a mere integration of equation Eq.(34) over
the walls is required.

In an ideal 2D cavity, the electromagnetic field does not
vary alongz,

HW s0d = 5Hx
s0dsx,yd

Hy
s0dsx,yd

0

andEW s0d = 5 0

0

Ez
s0dsx,yd.

s35d

Denoting cs0d=Ez
s0dsx,yd, the time-independent Maxwell

equations are reduced to a 2D Helmholtz equation,

s¹W t
2 + emv2dcs0d = 0, s36d

where the transverse gradient operator¹W t is associated to the
sx,yd coordinates, ande andm are, respectively, the permit-
tivity and the permeability inside the cavity. On the contour,
cs0d obeys Dirichlet conditions,

cs0d = 0 onC. s37d

This yields a complete analogy with the free propagation of
a quantum particle in a 2D infinite well. This type of system
is commonly called aquantum billiard. For a given mode,
the Ohmic dissipated power reads

P =
1

2sdFRC
d , E

0

d

dz i n̂ ∧ HW s0dicont
2

+E E
S

dain̂ ∧ HW s0diends
2 G . s38d

One defines the integralsI1 and I2 so that Eq.(38) is rewrit-
ten as

P =
I1 + I2

2sdm
. s39d

Using Faraday’s law, one obtains

I1 = j
Ld

A
eE E

S
daucs0du2 s40d

wherej is defined by

1

emv2R
C

d , u]ncs0du2 ; j
L

A
E E

S
daucs0du2, s41d

]n denotingsn̂·¹W d. Here it should be remarked thatj is a
parameter, which depends on the spatial structure of the
mode at hand. Likewise, one may computeI2,

I2 =
2

mv2 E E
S

da i ¹W tc
s0di2. s42d

Now using the 2D Green’s theorem together with Eq.(36),
one gets

I2 = 2eE E
S

daucs0du2 s43d

and, eventually,

P =
e

sdm
S1 + j

Ld

2A
D E E

S
daucs0du2. s44d

Considering that the total electromagnetic energy stored in
the cavity is given by

W=
e

2
E E

V
dv i EW s0di2 =

ed

2
E E

S
daucs0du2, s45d

the full width at half maximum(FWHM) of the resonances
is given by

G =
P

W
=

mc

m

1

d
Î 2v

mcs
S1 + j

Ld

2A
D . s46d

In our contextmc/m is practically equal to unity. Thus one
finally has to consider two distinct types of Ohmic losses:
those located at the surface of both ends, which amount to
attenuation along propagation, and Ohmic losses upon re-
flection at the contour,

GOhm= Gprop+ Grefl, s47d

where

Gprop=
2

d
Î v

2msends
=

dendsv

d
, s48d

Grefl = j
L

A
Î v

pmscont
= j

Ldcontv

2A
. s49d

Here, we have introduced two different effective conductivi-
ties (sends and scont) and their corresponding skin depths
(dendsanddcont) to account for two different types of copper
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used in our experiment, and for possible different surface
states for the top and bottom plates and the inner surface of
the copper frame used as the contour. These two contribu-
tions to the widths are also quite distinct in their physical
interpretation. Indeed,Gprop truly corresponds to losses en-
dured by a plane wave propagating in free space between
two parallel infinite metallic planes. It is a slowly varying
function of frequency, depending neither on the transverse
geometry of the cavity, nor on the spatial distribution of the
wave function in the cavity.Grefl, on the contrary, is related to
a loss mechanism located on the contour of the cavity, which
clearly depends on the geometry of the latter, and chiefly, on
the spatial distribution of the normal gradient of the wave
function via the quantityj. Grefl therefore fluctuates from
mode to mode and, in the case of the rectangular cavity, its
explicit form will be given in the following section. By using
a boundary perturbation technique to compute losses pertain-
ing to reflections on the contour, it is shown in Appendix B
that, to each correction of the imaginary part of the fre-
quency due to Ohmic losses, there is a correspondingly equal
correction of the real part. Moreover, this boundary approach
sheds light on the intimate connection between the boundary
conditions on the contour, leading to nonpurely real wave
functions, and the fluctuating partial widthsGrefl [21].

Collecting the above results with those obtained in the
previous section, we are now in a position to write theS
matrix between weakly coupled pointlike antennas in a 2D
cavity in the presence of Ohmic losses. It reads

Sab = dab − 2iT2svdo
n=1

N
cnsrWadcnsrWbd

v2 − vn
2 + ivn

s0dsGn
Ohm+ Gn

antd,

s50d

wherevn=vn
s0d−Gn

Ohm/2 and thehwn
s0dj’s are the unperturbed

eigenfrequencies of the ideal lossless cavity, and where

Tsvd = c
Z0

Z

sin2vlef f

2c

sin
vl *

2c
cos

vl *

2c

, s51d

the contribution of antennas to the widths being given, at
leading order, by

Gn
ant=

T2svnd
vn

s0d o
c=1

M

ucn
s0dsrWcdu2. s52d

Here it should be remarked that the second factorc in Eq.
(50) should not be a complex conjugate. Indeed, due to
Ohmic losses, the wave functions are no longer real and the
S matrix cannot keep its unitarity. Nonetheless, it obviously
has to remain symmetric. In the previous section, we used
the Hermitian formalism for the sake of convenience, but it
turns out to be inappropriate for the present purpose(see, for
instance, Ref.[13] about self-adjoint systems).

IV. EXPERIMENTAL VALIDATION IN A RECTANGULAR
CAVITY

A. A preliminary global test

The aim of this section is to check the pertinence of the
description given above in a rectangular cavity where eigen-
functions and eigenfrequencies are easily calculated in the
limit of vanishing losses. A preliminary test, which does not
involve any sophisticated fitting procedure, consists in com-
paring the average transmission between two antennas with
the corresponding quantity deduced from Eq.(50). Accord-
ing to this equation, the transmission coefficientsaÞbd for
v=vn approximately reads

uSabsvndu . 2T2svnd
ucnsrWadcnsrWbdu

vn
s0dGn

, s53d

whereGn=Gn
Ohm+Gn

ant. In a lossless rectangular cavity with
sidesLx3Ly, the eigenfrequencies are

vl,m
s0d = pcÎS l

Lx
D2

+ S m

Ly
D2

, s54d

where l, m are integers. The corresponding eigenfunctions
read

cl,m
s0dsx,yd =

2
ÎLxLy

sin
lpx

Lx
sin

mpy

Ly
. s55d

Assuming thatucnsrWdu.ucl,m
s0dsx,ydu, one deduces

T2svnd .
LxLyp

4vnGn

128
kuSabsvndul, s56d

where the average is performed on the positionsrWa andrWb of
the antennas. In our experiments, the average was obtained
by performing the 45 distinct transmission measurements
that the 10 antennas allow. The values ofvn andGn used in
the experimental evaluation of the right-hand side of Eq.(56)
were obtained, in a rough way, through the analysis of the
group delay. This quantity, defined as the derivative of the
phasewab of Sab with respect tov, presents rather well de-
fined extrema at frequencies close to eigenfrequencies. For a
gross estimation ofGn we usedGn.2/kdwabsvnd /dvl, which
is exact for an isolated resonance. Note that, in the case of
moderate or large modal overlap, this method generally over-
estimates the widths. Knowing the dimensionsLx andLy of
the cavity, the right-hand side of Eq.(56) only depends on
the length parameterslef f and l*. Recall thatl* is the length
of the perturbed region at the end of the coax, and thatlef f is
the effective length over which the field inside the cavity is
coupled to the antenna. One may assume, in this preliminary
global test, thatlef f remains close to the lengthl of the part of
the antenna which lies inside the cavity:lef f. l
=2.0±0.3 mm. In the same way, a rough estimate ofl* is
given by the distance between the end of the antenna and the
reference(calibration) plane of the coax: 16.5±0.2 mm. Fig-
ure 3 comparesT2 as obtained through Eq.(51) with its
experimental value deduced from Eq.(56) for the first 348
resonances up to 5.5 GHz. The lowest and the highest con-
tinuous curves correspond tolef f=1.7 mm andlef f=2.3 mm,
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respectively. At the resolution of the presented figure, the
curves obtained for values ofl* ranging from 16.3 mm to
16.7 mm are not distinguishable. A fair agreement is ob-
served between the experiment and our model. A first conse-
quence of this test is to substantiate the correspondence be-
tween the length parameters of our model and the actual
lengths of the coax antennas. Note also that this global pre-
liminary test requires no sophisticated data processing of the
individual resonances. In the following, we will see how our
model for coupling with antennas remains quite satisfactory
when put to more stringent tests.

B. A test with individual resonances

In the global test presented above, we had no need of a
precise knowledge of the wave functions at the antennas. To
check the validity of formula(50), we have developed an
original fitting procedure(see[22]) to extract the actual com-
plex eigenfrequenciesvn and the complex amplitudes

An
ab = − 2iT2svndcnsrWadcnsrWbd. s57d

With this procedure, based upon a mixture of robust algo-
rithms, we could check that the actual eigenfrequencies re-
main very close to the unperturbed values given by Eq.(54)
in the frequency range studied here. Now we proceed to
verify that the amplitudesAn deduced from our measure-
ments are well described by Eq.(57) with expression(51) for
T and formula(55) to approximate the true eigenfunctions.
Indeed, even if the existence of nonuniform losses(chiefly
those associated toGrefl) leads to nonpurely real wave func-
tions, we will see below that the corrections remain very
small. From Eq.(57) it is easily deduced for three different
antennasa, b, andc that

uAn
abuuAn

acu
uAn

bcu
= 2T2svnducnsrWadu2 . s58d

As there are 36 different ways of combining the 45 ampli-
tudesAab, yielding 36 slightly different values of Eq.(58),
one can use the following average estimate:

2T2svnducl,m
s0dsxa,yadu2 =

1

36 o
b,cÞa
b,c

uAn
abuuAn

acu
uAn

bcu
, s59d

where ucnsrWd u .ucl,m
s0dsx,ydu is assumed. For a given reso-

nance, one can directly compare the above quantity with
2T2svnd ucl,m

s0dsxa,yadu2 for the ten antennassa=1,… ,10d.
This comparison is shown in Fig. 4 for two distinct reso-
nances, namelyn=78 at 2.655 GHz andn=238 at 4.558
GHz. As the great majority of resonances that we are con-
cerned with are narrow enough to ensure a good correspon-
dence with the unperturbed wave functions, we observe a
fairly good agreement.

To extend our comparison to all resonances, one can now
average over all ten locations of antennaa. For the best
values oflef f=1.9 mm andl * =16.5 mm obtained in the fre-
quency range from 2 GHz to 5.5 GHz, Fig. 5 shows the
comparison between the experimental quantity
k 1

36ob,cÞauAn
abuuAn

acu / uAn
bcula and the prediction 2T2svnd

3kucl,m
s0dsxa,yadu2la up to 5.5 GHz. The agreement is excellent

on the average. By a close inspection, e.g., between 2 GHz
and 3 GHz as shown in the inset, one can notice that the
agreement is generally excellent even at the level of indi-
vidual resonances. Rare important discrepancies are ob-
served for very close neighboring eigenfrequencies(quaside-
generacies) due to modal overlapping. Indeed, when the
latter effect is not negligible, one expects that the spatial
distribution of the wave function results from a linear com-
bination of neighboring unperturbed wave functions[23].
Beyond 3 GHz, this effect deteriorates the agreement due to

FIG. 3. Experimentally based estimation ofT2svnd as given by
Eq. (56) (crosses). The gray region corresponds to its theoretical
expression(51) for values of lef f between 1.7 mm and 2.3 mm
sl* =1.65 cmd.

FIG. 4. Comparison of Eq.(59) with 2T2svnducl,m
s0dsxa,yadu2 at the

ten antennas(indices are introduced in Fig. 1) for resonancesn
=78 andn=238.
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the concomitant increase of the total width and decrease of
the mean spacing, leading to an inadequacy of the zeroth-
order eigenfunctions we use for our test.

C. Partial width decomposition

As seen above, the total width of a resonance can be
decomposed as a sum of three partial widths associated to
losses through the antennas, Ohmic losses on the contour of
the cavity, and Ohmic losses at the surface of both ends
which appear as damping along propagation. In a rectangular
cavity, the total width of thenth resonance, characterized by
the quantum numbersl andm, is given by

Gn = Gl,m
ant + Gl,m

refl + Gpropsvnd. s60d

By using expression(55) for the wave functions in order to
evaluate the factorj in Eq. (41), one obtains

jl,m =
Ac2

vl,m
2 L

S l2

Lx
3 +

m2

Ly
3D s61d

whence, using Eq.(49),

Gl,m
refl .

c2dcontsvnd
2vl,m

s0d S l2

Lx
3 +

m2

Ly
3D . s62d

These partial widths clearly vary from mode to mode as il-
lustrated in Fig. 6, wherejl,m−1 is shown for each eigenfre-
quency up to 5.5 GHz. Note that thejl,m’s oscillate around
unity and vary at most by 23%.

The widths associated to losses through antennas also
vary from mode to mode,

Gl,m
ant =

T2svnd
vl,m

s0d o
c=1

M

ucl,m
s0dsrWcdu2. s63d

In the previous subsection, we already checked the validity
of the above formula for all resonances shown in Fig. 5 since
Gl,m

ant is essentially proportional to the sum of expression(59)
over all antennas.

Thus by fitting the experimental transmission by formula
(50), one obtains a direct measure of the total width and an
indirect measure ofGn

ant, thus enabling us to evaluate the two
effective conductivitiessends and scont. A representation of
all the Ohmic widthsGn

Ohm=Gn−Gl,m
ant up to 3 GHz is given in

Fig. 7. A comparison is shown between theoretical Ohmic
widths (crosses) and experimental Ohmic widths(continuous
curve). The smooth dominant contribution given byGpropsvd
is indicated by the dashed curve. The agreement on the mean
level and on the amplitude of fluctuations(only present in
Gn

refl) is fairly good, whereas, resonance by resonance, the
agreement is not systematic, essentially due to the effect of
modal overlap mentioned above.

V. CONCLUSION

In conclusion, we have tried to provide a better under-
standing of the physical mechanisms at the origin of reso-
nance broadening in microwave cavities. We have explicitly

FIG. 5. Comparison between the experimental quantity
k 1

36ob,cÞauAn
abuuAn

acu / uAn
bcula (crosses) with the prediction 2T2svnd

3kucl,m
s0dsxa,yadu2la (line). Inset: enlarged view within the range 2–3

GHz.

FIG. 6. Values ofsjl,m−1d after Eq.(61) for all resonances up to
5.5 GHz.

FIG. 7. Behavior of the Ohmic widths up to 3 GHz. Comparison
is shown between theoretical Ohmic widths(crosses) and experi-
mental Ohmic widths(continuous curve). The dashed curve indi-
cates the smooth contributionGpropsvd.
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developed anS-matrix model including the frequency-
dependent coupling of the antennas and accounting for
Ohmic absorption at the boundaries of a two-dimensional
cavity. We have especially emphasized the necessity to dis-
tinguish between Ohmic attenuation along propagation, lead-
ing to a smooth frequency-dependent contribution to the total
width, and localized absorption at the contour of the cavity,
yielding a contribution varying from mode to mode. We have
performed experiments where we analyzed the transmission
versus frequency in terms of a Breit-Wigner decomposition
deduced from our model. In the rectangular cavity we used,
all the quantities involved in our theoretical description
could easily be calculated in the perturbative limit of small
or moderate modal overlap. We therefore have been able to
validate our approach and provide a very precise estimation
of the various contributions to the total widths. In particular,
the varying contribution of Ohmic losses at the contour could
be quantitatively checked at the level of individual reso-
nances, except for quasidegenerate modes. This approach has
recently enabled us to relate the losses at the contour,
in a chaotic cavity, to the imaginary part of the wave func-
tion [21].

We believe that our present approach is an important step
to test existing or yet to come theories of open or absorptive
chaotic wave systems. Indeed, such theories generally as-
sume that losses are associated with distinct well identified
coupling channels[11]. It is nonetheless not obvious that
these can be used to describe different sources of loss as
damping along propagation or Ohmic dissipation at the con-
tour. For instance, absorbing boundaries may be viewed as a
number(of the order ofL /l) of distributed coupling chan-
nels. Indeed, to mimic absorption, recent theoretical predic-
tions have been proposed but only in the asymptotic limit of
a large number of effective channels with vanishing coupling
[24,25] (see also[10]).
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APPENDIX A: EVALUATION OF THE S MATRIX

1. Self-adjointness condition

In the Hilbert space of the complete problem(cavity and
antennas), one defines the following scalar product:

sF,F8d =E E
A

drWwa
psrWdwa8srWd + o

c=1

M E
0

`

dzcwbc

p szcdwbc8
szcd.

sA1d

With this scalar product, the self-adjointness condition

sHF,F8d = sF,HF8d sA2d

reads

sHF,F8d − sF,HF8d

=E E
A

drWhwa
psrWdfDwa8srWdg − fDwasrWdg * wa8srWdj

+ o
c=1

M

fTc
pskdwbc

p s0dwa8srWcd − wa
psrWcdTcskdwbc8

s0dg

− o
c=1

M E
o

`

dzcfwbc
9pszcdwbc8

szcd − wbc

p szcdwbc8
9 szcdg . sA3d

Using Green’s theorem for the first term and integrating the
third one by parts, one obtains

sHF,F8d − sF,HF8d

=R
C

dn̂hwasrWdf¹wa8srWdg − f¹wasrWdgwa8srWdj

+ o
c=1

M

fTc
pskdwbc

p s0dwa8srWcd − wa
psrWcdTcskdwbc8

s0dg

− o
c=1

M

fwbc
8pszcdwbc8

szcd − wbc

p szcdwbc8
8 szcdg0

`. sA4d

The eigenfunctionswasrWd obey boundary Dirichlet condi-
tions, and the last term in Eq.(A4) vanishes forz→`. The
self-adjointness condition can thus be written

o
c=1

M

hfwbc
8ps0dwbc8

s0d − wbc

p s0dwbc8
8 s0dg

+ wbc

p s0dTc
pskdwa8srWcd − Tcskdwa

psrWcdwbc8
s0dj = 0.

sA5d

This condition is nontrivially fulfilled by imposing

Tc
pskdwasrWcd = wbc

8 s0d. sA6d

2. The coupling matrix elements

AssumingE0=k2, eq. (20) now reads

sD + k2dwasrWd = o
c=1

M

TcskddsrW − rWcdwbc
s0d. sA7d

Furthermore, the Green’s functions of the isolated cavity are
given by

sD + k2dGsrW,rW8,k2d = dsrW − rW8d. sA8d

By comparing eqs.(A7) and (A8), for rW=rWb, one obtains

wasrWbd = o
c=1

M

TcskdGsrWb,rWc,kdwbc
s0d. sA9d

With the boundary conditions(A6) and the expression(15)
of wb, relation(A9) becomes
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Ain
c −

i

k
Tb

pskdo
c=1

M

TcskdGsrWb,rWc,kdAin
b = Aout

c

+
i

k
Tb

pskdo
b=1

M

TcskdGsrWb,rWc,kdAout
b , sA10d

or, in a matrix form,

Ain − iKAin = Aout + iKAout, sA11d

whereK is anM 3M matrix defined by

Kabskd =
Ta

pskd
Îk

GsrWa,rWb,kd
Tbskd
Îk

. sA12d

FromAout=SAin one thus makes the relation(26) betweenK
and theS matrix explicit. By introducing in Eq.(12) the
expansion of the Green’s function in terms of the eigenfunc-
tions cnsrWd=kr unl of the isolated cavity,

GsrW,rW8,Ed = o
n=1

N
cnsrWdcn

psrW8d
k2 − kn

2 , sA13d

one finds the following expression for theK matrix:

Kabskd = STaskdcn
psrWad

Îk
Dp 1

k2 − kn
2STbskdcn

psrWbd
Îk

D .

sA14d

Finally, the elements of the coupling matrixW, related toK
by Eq. (27), are given by

Wmc =
Tcskdcm

p srWcd
Îkp

. sA15d

APPENDIX B: PERTURBATIVE BOUNDARY
CONDITIONS

An alternative way of computing the losses at the contour
is easily obtained by following a boundary perturbation tech-
nique(see, for instance,[20]). Indeed, callingc0 the solution
at the real eigenfrequencyv0 of the zeroth-order problem

defined by Eqs.(36) and(37), the perturbation of the bound-
ary conditions can be written

c . − s1 + id
mcd

2m
]nc0 on C. sB1d

Green’s theorem applied to this 2D problem straightfor-
wardly yields

v2 − v0
2 . − s1 + id

1

em

mcd

2m

R
C

d , u]nc0u2

E E
S

da uc0u2
. sB2d

Writing the perturbed eigenfrequency asv=v0+dv− iG /2,
Eq. (B2) becomes

dv − iG/2 . − s1 + id
1

em

mcd

4mv0

R
C

d , u]nc0u2

E E
S

da uc0u2
, sB3d

leading, in the case at hand, to equal corrections on both real
and imaginary parts ofv. This last comment is general and
applies as well to the corrections originating from Ohmic
losses at the top and bottom of the cavity. Thus, this pertur-
bative approach completely agrees with the one developed in
Sec. III as long as the widths are concerned and completes it
as it provides an estimation of the frequency shift of the
resonances related to Ohmic losses. This was indeed remark-
ably well verified for all the resonances with frequencies
larger than 2 GHz studied in Sec. IV of the present article,
these results being detailed in Chap. V of Barthélemy’s thesis
(Ref. [22]). It is also particularly interesting to note that Eq.
(B1) gives a quite natural hint of how Ohmic losses on the
contour induce a small amount of complexity for wave func-
tions that are purely real in the unperturbed limit. As long as
a perturbative approach is valid, an immediate connection is
deduced between the complex character of wave functions
and the fluctuating part of the widths embodied in the quan-
tity j defined in Eq.(41) [21].
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